This learning community aims to share and foster good practice in blended learning across all disciplines within ECU and beyond. As a community of practitioners and developers, we aspire to work hand-in-hand in providing a collaborative, supportive and collegial forum and networking platform for sharing experience and identifying relevant resources. Through our meetings, the group also serves as a sounding board for new ideas in best practice face-to-face, online and blended learning. Ultimately, we aspire to not only help members identify and understand what blended learning is, but (and as with the pinnacle of Bloom’s Taxonomy) to transition those in the Learning and Teaching sphere to the higher levels of analysing and evaluating their blended learning practices, then leading to knowledge creation and discovery guided by scholarly research in this area.

Slots include Q/A time
A/Prof Yasir Al-Abdeli, Co-coordinator BL CLC, School of Engineering

Progress and updates for the learning community
Library resources: blended and technology enhanced learning (apps, literature, SLIDE)
Blackboard: meta data on platform usage
Case studies: blended learning

Research Projects: The Role of Online Reflective Spaces (Using Padlet Walls) in Learning
Research Publications: Work-in-progress (Padlet project)

Workshops: BL
Expansion of app usage: apps reviewed, application examples given
Face-to-face: flipped classes (student perspectives, case studies)

Knowledge generation via reports and peer-reviewed (research) publications

Realise improvements to student centred L&T practice (face-to-face, online) via scholarly (research) projects

Use data (qualitative, quantitative) and assessments to contextualise and further develop tools, resources and methods for best practice face-to-face and online L&T

Increase the uptake of tools, resources and methods for best practice face-to-face and online L&T: real-time polling, surveys, apps, class time utilisation, teaching space layout, etc

Through peer support (academic staff, academic developers/designers, learning technology support officers and library personnel), share experiences and raise awareness on tools, resources and methods for best practice face-to-face and online L&T

Blended Learning Collaborative Learning Community
Purpose (activities, direction)
A work-in-progress
What next?
Implementation Plans for the Suite of Curriculum Policies / Assessment Policy Implementation and Communication Plan (4.2c)

“Assessment practices that enhance students’ global competitiveness by incorporating relevant technologies to facilitate a future-oriented experience”

Action item: Case studies of technology-enhanced assessments (July 2018 - Dec 2019)
Dr Catherine Moore, Co-coordinator BL CLC / Senior Academic Developer, CLT

Research Methods: BL CLC’s first collaborative/multi-disciplinary project: Overview of the Padlet reflective online spaces project, the research tools /questions

Summary notes compiled post BL CLC meeting (unconfirmed)

- Students learn about concepts (using the graphical oriented reflective spaces), but (the hypothesis is that) if they can translate these learning concepts through (other) images or movies (reflect) this helps their learning.
First collaborative research project

- The role of online reflective spaces in learning
- Engineering (Yasir Al-Abdeli), SBL (Claire Lambert), CLT (Catherine Moore)
- Padlet walls to enhance learning of key concepts
 - Walls with graphical or multimedia intitated by lecturer – students reflect on relevance, connections, interpretation
 - Walls where students post images/multimedia illustrating key concepts
Research questions

1. What benefits do students perceive from the graphically-based reflective learning activities?

2. What are the challenges associated with engaging the collaborative tool used in reflective learning activities?

3. Does providing a collaborative tool early on in the unit assist with enhancing student engagement?
Methods

1. Survey template compiled (available for others to modify/adapt)
2. Pre-research survey to refine questions/clarity
3. Short clip to introduce survey
4. Staff access to survey data after release of semester results
Item 3

Richard Stals, Senior Learning Solutions Advisor, CLT
Blackboard usage metadata/trends (mobile-vs-desktop, hour of day access), Blackboard updates

Summary notes compiled post BL CLC meeting (unconfirmed)
• Move to the (data) cloud has improved effectiveness of BB support
• Move to BB Collaborate (by end of 2018)
• Next “big thing” revolves around lecture capture (system ready by start of 2019).
• Video submissions will be enabled (Assessment tool)
Learning Technologies Update

• Moved to Manage Hosting – Blackboard in the Cloud
• Blackboard Collaborate – Adobe Connect Decommissioning end of 2018
Learning Technology Support

- **Context-specific Project Support**: A collaborative effort between your School’s Associate Dean Teaching and Learning and the Centre for Learning and Teaching to plan strategic and measurable project-based support.

- **On-to-one Expert Support**: Personalised, short and targeted at-the-elbow support is available via booking or by visiting designated drop-in sessions located within your School.

- **Peer-led Connection**: School champions are given early access to training and software. Forming a good understanding of the possibilities and challenges for their own School, they communicate any feedback, issues, questions or concerns that may arise.

- **General Workshops**: A series of one-hour workshops covering the main uses and workflows. These are offered in both face-to-face and online modes. https://hp.appsec.ecu.edu.au/staff-development/

- **Self-Access Resources**: A library of self-directed, online resources to support staff in their planning and use of the technology. Includes: screencasts, printable guides, self-paced training modules, user story showcases and curated links to external resources. http://intranet.ecu.edu.au/learning/learning-technologies/collaborate
Blackboard Logins by Hour

<table>
<thead>
<tr>
<th>Mobile Access</th>
<th>Non-mobile Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 am - 8:59 am</td>
<td>1,209</td>
</tr>
<tr>
<td>9 am - 9:59 am</td>
<td>1,207</td>
</tr>
<tr>
<td>10 am - 10:59 am</td>
<td>1,379</td>
</tr>
<tr>
<td>11 am - 11:59 am</td>
<td>1,265</td>
</tr>
<tr>
<td>12 pm - 12:59 pm</td>
<td>1,302</td>
</tr>
<tr>
<td>1 pm - 1:59 pm</td>
<td>1,259</td>
</tr>
<tr>
<td>2 pm - 2:59 pm</td>
<td>1,128</td>
</tr>
<tr>
<td>3 pm - 3:59 pm</td>
<td>1,084</td>
</tr>
<tr>
<td>4 pm - 4:59 pm</td>
<td>994</td>
</tr>
<tr>
<td>5 pm - 5:59 pm</td>
<td>911</td>
</tr>
<tr>
<td>6 pm - 6:59 pm</td>
<td>885</td>
</tr>
<tr>
<td>7 pm - 7:59 pm</td>
<td>798</td>
</tr>
<tr>
<td>8 pm - 8:59 pm</td>
<td>863</td>
</tr>
<tr>
<td>9 pm - 9:59 pm</td>
<td>804</td>
</tr>
<tr>
<td>10 pm - 10:59 pm</td>
<td>654</td>
</tr>
<tr>
<td>11 pm - 11:59 pm</td>
<td>502</td>
</tr>
<tr>
<td>12 am - 12:59 am</td>
<td>216</td>
</tr>
<tr>
<td>1 am - 1:59 am</td>
<td>119</td>
</tr>
<tr>
<td>2 am - 2:59 am</td>
<td>93</td>
</tr>
<tr>
<td>3 am - 3:59 am</td>
<td>64</td>
</tr>
<tr>
<td>4 am - 4:59 am</td>
<td>66</td>
</tr>
<tr>
<td>5 am - 5:59 am</td>
<td>144</td>
</tr>
<tr>
<td>6 am - 6:59 am</td>
<td>342</td>
</tr>
<tr>
<td>7 am - 7:59 am</td>
<td>651</td>
</tr>
</tbody>
</table>
Amanda Myers, Librarian, School of Education, ECU
LTI – Learning Tools Interoperability, updates on the SLIDE project

Summary notes compiled post BL CLC meeting (unconfirmed)

- Library guide for Technology Enhanced learning undergone more updates. This can be accessed from https://ecu.au.libguides.com/TEL/main
- Seeking staff to send citations to papers/works published (at ECU) under the themes of blended learning. These can be cited on the library guide.
- Suggestion made to include list of on-campus staff users (peer-support) to assist others wanting to use any apps that had already been tried.
Student focus group feedback on blended and technology enhanced learning

Post BL CLC meeting compiled (unconfirmed) notes
- Teaching Enhanced Learning TEL Tales compiled
- Focus group feedback 12/18 TEL units at SBL
- Feedback includes less preference to use BB on mobile platforms; preference for diagnostic tasks (see how they are going, not necessarily assessed)
TEL STUDENT FOCUS GROUP

- What aspect did you **enjoy** in the unit?
- What would you **change** in the unit?
- How do you feel about **technology** and **online** environment in the unit?
 - What worked well?
 - What could be improved? How?
- What would be the **absolute best learning experience**?
- What motivates you to attend lectures?... campus?
<table>
<thead>
<tr>
<th>Category</th>
<th>Rating 1</th>
<th>Rating 2</th>
<th>Rating 3</th>
<th>Rating 4</th>
<th>Rating 5</th>
<th>Rating 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great lecturer important</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Approachable and encouraging</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry experienced</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable explanations</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pre-class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-class was appreciated/preferred</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quiz helpful for measuring understanding</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Links from pre-class to in-class are important</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-class did not link to in-class work</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly tasks were not clear</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiz errors (lack of part marks)</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Videos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helps learning</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funny/Interesting is important</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Videos can be too long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb well prepared</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb available from semester start</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb is easy to use</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb login issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb not good on phones</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

- The enthusiasm and care for students
- Approachable and engaging
- Industry experience
- Applicable explanations
- Pre-class was appreciated/preferred
- Weekly and summary diagnostic quizzes
- Must link pre-class to in-class
- Must link pre-class to in-class
- Clear weekly tasks
- Quizzes and test perform correctly
- Video is a convenient and contextualised way of learning
- Interesting videos
- Videos need to be less than 10 minutes
- Bb was clearly laid out
- All weeks available from start
- Bb is intuitive to use
- Bb login needs to be more reliable
- Bb needs to improve on mobiles
PRE-CLASS

Preferred
- Work at own pace
- Variety of mediums
- Available early
- Love videos

Videos
- Target 10 minutes
- Funny/interesting/case study
- TechSmith Relay link

Quizzes
- Marks or no marks
- Reference point - league table

Bb
- Template is intuitive
- More mobile friendly
CLASS

Lecturer
• Enthusiasm and care for students
• Explanations by application
 • Industry experienced/connected
 • Guest speaker

Active-learning
• Class discussion and problem solving
• Kahoot!
• Good balance between pre-work, explanation and active-learning time
• Rooms could be more collaborative

Flow
• Link between pre-class, in-class and assessment
 • Repeatedly communicated
• Don’t repeat pre-class
• Weekly sign-posting
UTEI RESULTS…

TEL Pilot (preliminary)
A/Prof Sally Male, Chair in Engineering Education, The University of Western Australia

Case study: Virtual reality in teaching design safety

Summary notes compiled post BL CLC meeting (unconfirmed)

- Use of VR in the Master of Professional Engineering course.
- Students identify risks (a “thing” that might particularly be associated with a risk)
- Case study: crane in back of truck (controls at the back, user cannot see the object being moved and simultaneously look at the controls).
- App: Unity (to develop the VR tool)
- Challenges: using VR in very large classes.
- Approach: One student uses VR which is then followed by a (group) discussion.
Using VR to teach Safety in Design to 300 Students

Sally Male
VR was used with 300 students to teach safety in design. All students learned about the authentic process, despite only one student per group wearing the headset.
Acknowledgements

Researchers: Patrick Kenworthy, Tim French, Ghulam Mubashar Hassan, Andrew Guzzomi

Funding:

- Australian Government Department of Education and Training
- Engineers Australia
- CingleVue International
- Curtin University
- UWA
- Australian Council of Engineering Deans
- UWA Edfutures
Dr Kate Rowen, Assoc Dean L&T, School of Engineering, Murdoch University

Case study: from traditional delivery to blended; BL perspectives/directions at Murdoch

Summary notes compiled post BL CLC meeting (unconfirmed)

- Case study: Unit which assists students transition if they had not done chemistry before at high school (Unit Learning Outcomes are chemistry related).
- Delivery: no face-to-face classes (see Evolution slide showing progression/timeline), online learning platform adopted.
- Approach: Redeveloped lab activities as workshops (no preparation needed for labs, not dependant on having earlier pre-reqs)
Fundamentals of Chemistry
From Traditional to Blended Delivery

Kate Rowen Leonie Hughes LanChi Koenigsberger
Context

Bridging unit for students who have not completed chemistry at high school (700 – 800 students/annum)

Learning outcomes relate to chemistry knowledge that students need to underpin further study in science

Preconceived ideas of difficult subject matter and irrelevance to their further study influence student engagement in the unit

• Low utilisation of lectures and tutorials
• Need to improve engagement and achievement in the unit

Major changes
• Cessation of classroom lectures and tutorials
• Custom textbook development
• Adoption of online learning platform
• Redevelopment of lab classes
Evolution

Pre 2015

- Traditional format
- Lectures – 4 hours/week
- Tutorial – 1 hour/week
- Lab – 3 hours x 5
- Standard textbook
- Learning materials mainly documents

2015 2016

- No classroom lectures
- Workshop – 2 hours x 5 (structured learning activities based on POGIL pedagogy\(^1\,\^2\))
- Custom textbook
- Mastering Chemistry online tutorials
- Lab – no change

2017

- No classroom lectures
- No workshops/tutorials
- Mastering Chemistry online tutorials with assessment weighting for participation
- Custom textbook
- Drop in clinic for learning support
- Lab redeveloped to merge workshop and lab learning activities

\(^2\) https://pogil.org/resources/writing-submitting-pogil-activities
Lecture Recordings

Original recordings
• Long (like traditional lectures)
• Not many

New set of recordings for 2018, using a variety of technologies
• Power point screen capture (Camtasia), lightboard, document camera screen capture
• Short (bites) and several recordings for each module
Mastering Chemistry

- Online learning platform (Pearson)
- Items selected to build ‘Tutorials’

Hints to guide students through problems – just like we do in classroom tutorials
- Incorrect answer feedback helps students determine where they went wrong
Labs – old and new design

Old laboratory classes (3 hours x 5)
- Lewis structures and molecular shapes
- Solubility rules
- Stoichiometry
- Titration
- Organic compounds

New laboratory classes (4 hours x 5)
- Elements and the periodic table
- Representing pure substances and molecular shapes
- Intermolecular forces (Part A)
 - Chemical reactions and equations (Part B)
- Oxidation and reduction reactions
- Synthesis of paracetamol

Old laboratory classes
- Limited range of concepts covered
- Focus on experimental work and associated student anxiety can take attention away from the learning opportunity
- Better if students prepare for class (most don’t)
- Assessment by lab demonstrator in class

New laboratory classes
- No preparation required or expected*
- Highly structured, stand alone learning activities*
- Not lecture based, demonstrator facilitates learning*
- Workshop focus with basic experiments to reinforce certain concepts
- Demonstrator allocates participation mark
- Online quiz at the end of each lab

Conclusions

- Complete transformation from traditional to blended learning mode
- Good overall student satisfaction on unit surveys
- S1 2018 Question 8 – internal 5.00 and external 5.55 (out of 6)
- Average mark has improved, however...
- Assessment has also been restructured during the transformation
- Much research to be done
- Staff job satisfaction improved too 😊
Summary notes compiled post BL CLC meeting (unconfirmed)

- Context: teaching over many locations at the same time.
- Challenge: some students do not come to campus, and so the challenge is how to get them to engage the learning. Hardware resources cannot sometimes be replicated (cost a factor).
- Approach: use online labs (booked by users), system allocates teams to do the labs collaboratively.
Remotely Accessible Synchronous Delivery of Electrical Engineering and Computing Subjects

Prof. Iain Murray AM
School of Electrical Engineering, Computing and Mathematical Sciences
Curtin University of Technology
What we will present today …

- Motivation for remotely accessible labs
- A bit of history
- The virtual classroom
- Extending the system
- Conclusions
CAVI

- Established Academies at –
 - Association for the Blind WA
 - National Association for Blind, New Delhi, India
 - Enable India, Bangalore, India
 - Ceylon Employers Federation Colombo
 - Peradeniya University Kandy
 - Royal National College for the Blind (UK)
- More than 300 students enrolled globally
- Offering 12 unique courses in ICT
Motivation

- Cost
 - Equipment eg NI USRP $10,600 per pair +Labview
 - Expert support staff at each location

- Student access

- Scalability
 - Currently 4 campuses, Bentley, Miri, Sri Lanka and Dubai
 - MOOCS/Micromasters
 - 64,000+ students
 - Verified gain access to our labs

![Image of equipment]
Cisco Network Academy Program

- Highly respected industry based program
- Over 1,000,000 students in 165 countries
- Started teaching blind and vision impaired students in 2002
- Included in ECE Units in 2003
- The Cisco Academy for the Vision Impaired (CAVI) is in around 15 countries
 - Not sure how many as it doesn’t matter
Current in Person Labs
Remote Lab Equipment
The New System
USRP Software Radio (QPSK modulation)
New Challenges

License servers reside on the host hardware

Microcontrollers/FPGAs

NI Virtual Instruments

USB connection to VM

USB connection to VM

USB connection to VM

USB connection to VM
New Challenges

Two units with approx. 550 students
- average of 7 laboratory sessions undertaken by each student
- 1 hour 45 min average on each session
- 5352 hours and 3889 individual or group sessions
Student Responses

Figure 1: Did you utilize the laboratory equipment outside normal operating hours?

Figure 2: My experience with NotLab was positive (left), NotLab offers software for remote lab access. (right)

Figure 3: NotLab is easy to use (left), NotLab offers a consistent experience between the 2 campuses (right)

Figure 4: The remote lab offered me a safe learning environment minimizing possible safety risks, health hazards and accidents. (left) The remote lab offered a good overall learning experience. (right)
Conclusion...

- 24/7 access to **REAL** laboratory equipment
- Cross campus collaboration
- Logging of laboratory work
- Shared Access
- Critical aspects
 - Peer support and sense of belonging
 - Face to face (or voice to voice) contact
 - Real (not simulated) lab equipment
 - Assessment
Instructor and student main page
Select Class
You are a lead instructor in the following class(es).

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Lead Instructors</th>
<th># Enrolled</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation Festival Demo</td>
<td>Iain Murray, Nazarin Mohammadi</td>
<td>6</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Cancel
The scheduler allows you to make lab reservations.

- View or cancel reservations
- Reserve instructor-led training time for a class
- Reserve self-study time for teams
- Reserve self-study time for individual learners
- Reserve an equipment pod for your own use
- Reserve lab time in a class that you are attending as a learner

Cancel
Current Lab Exercise

2.3.3.4 - Building a Simple Network

- AE CCNARS INTROTONET - MAPASA - English: 0.0.0.1 - Initializing and Reloading a Router and Switch
- AE CCNARS INTROTONET - MAPASA - English: 0.0.0.2 - Installing the IPv6 Protocol with Windows XP
- AE CCNARS INTROTONET - MAPASA - English: 2.3.3.4 - Building a Simple Network
- AE CCNARS INTROTONET - MAPASA - English: 2.3.3.5 - Configuring a Switch Management Address
- AE CCNARS INTROTONET - MAPASA - English: 3.3.3.4 - Using Wireshark to View Network Traffic
- AE CCNARS INTROTONET - MAPASA - English: 5.1.3.6 - Viewing Network Device MAC Addresses
- AE CCNARS INTROTONET - MAPASA - English: 5.1.4.3 - Using Wireshark to Examine Ethernet Frames
- AE CCNARS INTROTONET - MAPASA - English: 5.2.1.8 - Observing ARP with the Windows CLI, IOS CLI, a
- AE CCNARS INTROTONET - MAPASA - English: 5.3.1.10 - Using IOS CLI with Switch MAC Address Tables
- AE CCNARS INTROTONET - MAPASA - English: 6.3.1.9 - Exploring Router Physical Characteristics

[Change Exercise]
Click on the Show Lab Content button to view the lab instructions.

The physical cable connections have already been connected in the NETLAB+ system. Any reference in the lab regarding connecting cables should be ignored.

This lab assumes Windows 7 is installed on the PCs. If using other versions of Windows the steps to complete the lab may be slightly different.

Interface names may vary among network device type. The interface names shown in the topology image are
<table>
<thead>
<tr>
<th>DEVICE</th>
<th>TYPE</th>
<th>USER ID</th>
<th>NAME</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Cisco 2901/2911 (S0/0/x)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R2</td>
<td>Cisco 2901/2911 (S0/0/x)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R3</td>
<td>Cisco 2901/2911 (S0/0/x)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S1</td>
<td>Cisco 2960</td>
<td>235526I</td>
<td>Nazanin Mohammadi</td>
<td>1</td>
</tr>
<tr>
<td>S2</td>
<td>Cisco 2960</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>Cisco 2960</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASA</td>
<td>Cisco ASA 5505</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PC A</td>
<td>Windows 7</td>
<td>235526I</td>
<td>Nazanin Mohammadi</td>
<td></td>
</tr>
<tr>
<td>PC B</td>
<td>Windows 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PC C</td>
<td>Windows 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CLICK ON THE DEVICE NAME TO OPEN A CONNECTION

Drop My Connections
Instructor view of a students screen
Want to be part of our Collaborative Learning Community?

Join us for our next event and forward this to other colleagues at ECU and any of Perth’s based Uni’s who may want to join the BL CLC

✉️ y.al-abdeli@ecu.edu.au or c.moore@ecu.edu.au

Co-coordinators, BL CLC

Acknowledgements: Thank you to presenters for consenting to share their slides.

Access: Summary notes (slides) of earlier BL CLC activities: